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I. INTRODUCTION

During the last decade, the calculation of g-tensors has often heen
. . . . 1~
a part of the discussion of the electronic structure of radicals.
Progress has been made in the theory of spin-orbit and hyperfine inter-
actions,7 but in the treatment of g-—tensors more attention has beaen
given to problems of gauge invariance, spin-other-orbit coupling, znd
. . . . 8-10 e
higher order perturbation contributions than to the approximations
usually made in the second order calculation.

4

Glarum3 gives the results of some calculations for the radical

o
o

CHS’ NH2 and CHZ' He has computed some terms very accurately, but has

B

approximated multicenter terms. Neglecting the latter leads to g = 2.001%1
for CHB’ while if they are included the value is g = 2.00264. The effect
on the shift Ag from the free electron value 8o = 2.002319 is thus signi-
ficant. Approximations made in evaluating a large term should be
carefully investigated.

Because of the need for more precise calculations, and to provide
a test of different approximations, we present in this paper some results
for the molecular ion H2+.

In Section II the theory of the g-tensor is briefly reviewed. In
Section III we present the results of several calculations of some states
+
9 -

of unperturbed H The first-order wave function with respect to the

perturbation £ ° H , as computed variationally and in terms of zero-order
M oue
excited states, is presented in Section IV. In both cases it is possible

to get some information about the completeness of the set of functions

in terms of which the expansion is made. These results are applied, in



Section V, to the computation of the g factor for H2+ at the equilibrium
internuclear separation. Special emphasis is placed on the results of
the LCAO approximation. TIn Section VI we discuss these results and
support the position that the neglect of multicenter terms is very
dangerous and that one cannot use a single value for the spin orbit
‘coupling parameter.

All calculations have been done in double precision on the Univacz
1108 computer at the University of Wisconsin Computing Center. Only the
equilibrium internuclear distance has been treated. In discussing the
theory in the next section we use c¢gs units, but calculations were done

and are reported in atomic units.
1. REVIEW OF THE THEORY OF g~TENSORS

To discuss the g~factor or g-tensor, we must introduce the model
spin Hamiltonian in which it occurs. It is assumed that the full Hamil-
tonian including spin and magnetic interactions, for a radical system
in some particular electronic state (usually the ground state) can be
replaced by an effective operator acting on a purely spin space. The
dimension of this space is equal to the degeneracy of the state in question
when magnetic interactions are neglected. The effective operator is
called the spin Hamiltonian. It includes spin operators and parameters
which éfe chosen so as to make the replacement possible. For a system
in a doublet state, with no orbital angular momentum, and with hyperfine
interactions neglected, the spin Hamiltonian can be written

j{spin = E(O) + B% ® v%u ° NSW" (l)



(0)

The constant E simply represents the electronic zero order energy forx
the set of states in question and is usually omitted. The second term
gives the Zeeman energy and remains also for more complicated systems

where additional terms must be included. In this term B = e%fﬁma is

the Bohr magneton, £L is an external magnetic field, and § is the
L

effective spin operator (in units of K ). The g~tensor is in efi
defined by this equation. It determines the Zeeman splitting as a
function of the radical orientation. To calculate it we must comsider
further the relationship between the full Hamiltonian and the spin
Hamiltonian.

For a one—electron system such as that we will be considering, Dirac

theory provides a convenient starting point. The radiative correct
which lead to the deviation of the free-electron g factor from exactly
2 can be dealt with by the insertion of an effective moment. To facilitate
a general perturbation treatment, the Dirac Hamiltonian in a particular
Lorentz frame is transformed to a representation in which it becomes an
infinite series starting with the ordinary, non-relativisitic Schrodinger
Hamiltonian as a first, zero—order term.
The transformation is readily made to obtain terms accurate through
second order in the fine structure constant. Extention to higher order
is difficult, although the difficulties are not insurmountable if nuclear
magnetic moments are neglected and if the scalar potential is everywhere
gativls 17 19 . . ,
. We will not be concerned with the higher order terms,

here, in any case. Some care must be used to preserve gauge invariance

and Hermiticity. The result can be written (for an electron of charge -e)
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where 2 is the electronic momentum operator, éz the extermnal electric
field and Ao,ﬁathe scalar and vector potentials, respectively. Nor-
mally, ;a is the set of three Pauli spin matrices. To include the
effect of radiative corrections on the electron's gyromégnetic ratio,

however, we can take

-1
wg{=’ﬁ g S (5)

where §L is the usual spin operator. (Differing from é,Of the spin
Hamiltonian by the inclusion of %.) This introduces the necessary

factor ge/z. We will be concerned with this factor only in term j[’z;



it can be replaced by 1 elsewhere, to the level of accuracy treated
here. The function k = kgg) arises in the partitioning treatment of

the Dirac equation. It is
k = 2mc2(W + eAO + 2mc2)-l (6)

where W is the non-relativisitic energy. It is seen that %k 1is
essentially equal to 1 nearly everywhere, but goes to zero at points
where AO becomes infinite. When the effect of nuclear magnetic
moments is considered, the presence of k leads immediately to the
contact h&perfine interaction. It also provides convergence factors in
some integrals which would otherwise be divergent.

One way to obtain the relationship between the full Hamiltonian
and the model spin Hamiltonian is to empioy the partitioning techmiqueﬁlﬁ
It is convenient, although not essential, to introduce a basis set

¢k(0)

consisting of the eigenfunctions of f{o . The matrix form
"

of the stationary state Schrodinger equation is then partitioned into

two sets: set a , containing the degenerate states associated with

the ground state zero-order energy, and set b containing all the rest.

1{aa - jfaa ziab gf
e o =0 (7)
Al ba 1{bb - ﬂbb Cb
e wer o L8

This represents a pair of matrix equations. The second is formally

solved and the result substituted into the first to give

Yo Vo

jiaa _ j{ab (J,ibb _ Efb)”l giba _ quaa] ,SLa= 0 (8)



Since we are interested in an energy close to the zero order energy
of the "a" states, with which the "b" states are non-degenerate, the

inverse in the second term will exist. The equation can be rewritten

[ jt!aa _ Tyab (}ibb - E ﬁbb)~l j{'ba - (E - EO(O))ﬁaf] @ = 0
(144 o W L LY A WL
(9

!
where j{ is the total perturbation f-He and EO(O)

is the
ground state zero order energy associated with the "a" states. 1f we

are willing to neglect terms of higher than second order, then in the

e

second term 1{ bb can be replaced by j{ obb and E by EO(O).
v

The equation then becomes

M c® = (& - EO(O>) gf (10)

., CEf v

where the effective Hamiltonian, j{ off ° has matrix elements

| ' o
(Mg = By Zo5®@ 5 ®© (11)

The dimension of the "a" space on which jzeff is defined is

just the number of states which are degenerate in the zero order ground
state. The spin Hamiltonian is defined in terms of spin operators and
parameters so that it has the same matrix elements as j{ off° When

there is only spin degeneracy in the zero order ground state, as for

2o + _ + . ‘e . . . .
Zg H2 , the identification of parameters with matrix elements is

straightforward.

The g tensor of Eq. (1) will have contributions of two types.
YHAA

One arises in the first-order term from the term gOBk Se

}
oS:H of 3, and



gives just the isotropic, free electron part of g . Other terms linear
Tt

in H and contributing in jéeff to the same matrix elements as

§3g°s in the spin Hamiltonian will arise in the cross-term contribution

e T

to the second order expression: that involving K'Ek(implicit in j%%}

nan
. . s . {
and %°S (implicit in :HS).

For a uniform external magnetic field i&,

1 .
1 T e "3
A A(r) 5 Hxr . (123

Yoo

If E:\arises only from the nuclei, which we assume to be fixed, then

-
ezv
A =A()= 5 -—— (13}
[¢) O V by
A%
where 5 is the vector from nucleus V , having charge eZv , to the
point r and 1 is its length.
o V

It follows that

F-y V= ) (14)

'
Then 1{3 can be rewritten

¢ _ e 2 3 .
3 2mc geBk E(Z\)/r\) ) .5»..’:1\)’{ 4
_ 2,2 3y a. N
IR RGNS (15)
where £%>= ‘ﬁfl'ﬁw xp is the orbital angular momentum of the nucleus

14
about nucleus Vv . (in units of -ﬁ ) Similarly j{l becomes
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where & = %ﬁl r x p_1is the orbital angular momentum about the origin
I TR
with respect to which the vector potential é;is defined. A change
in this origin is a gauge transformation. Any choice c¢an be made,
but it must be made consistently in any one calculation.
i
The remaining term of potential interest is j%s , which is

proportional to

Z
V

P IEREY - eRe®l -
vV

It must be retained if gauge invariance is to be preserved, but in
the present calculation its contribution is found to be negligible.
The components of g are 8pn * WD T X, ¥y OT Z and are given

1)
by

gmn - ge<o ]k10>6mn

- Z
—g 8 @ @ - O o2z, g |5>
e 550 i o Vo 3 "vm
v

x <j ]k,Q‘n]o> (17)

The first term is the iostropic, free electron value. We are inter-

ested in the rest, Ag = - . It has component
0T g s ponente
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The specific system to be considered here is H2+ . Lt is

apparent from the symmetry of the system that the only orientation
variable affecting the Zeeman splitting is the angle between the
molecular axis and the field direction. A molecule-fixed coordinate

system with its 2 axis along the internuclear axis will be a principal

e

axis system for g with g =g . Since the ground state of H
o XX 2

vy
ig an eigenstate of Qz having eigenvalue zero, each term in the
sum giving Agzz vanishes so g,, = 8 and it is only necessary to
calculate AgXX .

The expression for ‘éM,WhiCh results from this discussion is
equivalent to that of conventional Rayleigh—Schrgdinger perturbation
theory, involving a sum over excited states. The second order part
of the expression can also be evaluated by obtaining a first-order
wave function with respect to one of the perturbations, e.g. ﬁ¢1 .
and then computing a matrix element involving the other perturbation,

j{;.lA The roles of jii and ji; could equally well be inter—
changed, bul this choice is computationally more convenient. This
approach would follow more naturally if a more general treatment of

the perturbation '}{’ had been employed. It is difficult to give

a rigorous definition of g in the more general perturbation treatment
=y
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however. Both approaches will be used here.
IITI., ZERO ORDER WAVE FUNCTIONS

As a first step in the calculation we need the zero order functions
for ground and excited states. The exact solution of the H2+ problem
is well known,12 but the coefficients appearing in the excited state
functions required for the Ag calculation are not in all cases readily
available. We thus begin by developing a set of good, approximate
solutions to the zero order problem. The coordinate system is shown
in Figure 1. It is centered on the midpoint of the line between nuclei
"a and b, and has its 2z axis élong this line pointing toward b

The internuclear distance R is fixed at the equilibrium value 2aO

and atomic units have been used. It is convenient to use elliptic

coordinates
- ra + rb
R
(19)
r - r
__a b
M= R
and
-1

A. Ground State

+
For the 25 ground state of H2+ we know that the wave function

can be writtenl5

MW S  oa-1dlz e P oan (20)
2. GxD]ls 5 s

wo(o) =0+ 1) e



where PS is a Legendre polynomial and K = - (R2/2)(E - 1/R) ,

A= 1.t
T l) are somewhat

o =R/ A - } . The terms in (A + l)G and ¢
inconvenient and can be replaced by their power series expansions.
Only even powers of | occur with non-zero coefficient. They can
be collected and the various series then truncated to give an approxi-
mate solution16

NI NJ

I e A B
° i=0 §=0

(21)

The exponential coefficient o and the Fij can now be treated as
variational parameters. For any fixed o« , variation of the linear
coefficients leads.to the usual secular equation lEA— %&J =0 . We
have used the Giuens-Householder method to obtain the optimum Fij
as functions of o , and this parameter was then optimized to give the
best Eo . When NI Dbecomes infinite the exponential behavior can

be duplicated by the power series, so the optimum Eo becomes inde-
pendent of o . ﬁnough terms were retained in the expansion so that
EO was insensitive to small variations in o .

An alternative approach to getting an approximate function iz to

use a linear combination of atomic orbitals. (LCAO). A three-term
17

—-oxr -Qr -Qr ~QlX

LCAO function is:

v (0
Wo = Cl(e

a ,
+ 03 (Zarae - 7.1 e ) (22)



This function can be expressed in elliptic coordinates. It is of the
form given in Eq. (21) but with some restrictions on the Fij . We
must expect, therefore, that the result will not be as good. To
preserve this analogy we have considered only one scale parameter, o .
Although there are only three coefficients, the presence of terms
involving cosh(oRu/2) and sinh(aRuU/2) in the elliptic coordinate
expression make this function less convenient to work with.

In Table 1 we have listed some results obtained with functions of
these forms, and with the exact function calculated by Bates, Ledsham
and Stewart.l5 The wave function WO(O)(NI,NJ) is very good, giving
the energy as accurately as desired for sufficiently large NI and NJ.
With only 9 terms the precision in the energy is already 2 x 10‘6 and

Pare within 1% and 5%, respectively,

the expectation values of A and u
of their exact values. The calculated value of <LX2> agrees well with
that calculated by Dalgarno and McCarroll.18 The optimum Fij coefficients
for NI = NJ = 4 and o = uopt = 1.689727 are listed in Table 2. It is
apparent that the coefficients below the diagonal (j > i) in the table
are small compared with those above it. This suggests that it will
be a good approximation to use
an T

N i .
WO(O)(NI) = e 5L F.. AT
i=0 j=0 1

2 (23)
which has only (NI + 1)(NI + 2)/2 terms instead of (NI + 1)(NJ + 1).
In practice one cannot increase NI and NJ to a great extent because

of increasing dependency within the set of nonorthogonal functions.
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As anticipated, the LCAO results are not as good. The energy is
in error by 2%, expectation values of powers of A and U are off by
10%, and <LX2> is even worse. The optimum energy is attained when

o= 1.249, C. = 0.398251283,102 = 0.08160168788 and C, = 0.00683822144.

1 3

B. The 3d 2H State
g

The first excited state of H2+ having the property that

<O|Lx|n> # 0 is the 3d 2Hg state. We have used approximate functions

of similar forms to those employed previously

. L Lo PI i o n.
¥ pry = 02 cn)%1 - 1B % Msine 1 1 p,, A5 (24)
34l . . ij
i=0 =0
~(0) _ a _,b a _,b a b .
LPBCm(LCAO) = P1(2py Zpy) + 1>2(3py 3py) + P3(3dyz,+ 3dyz> (25)

We have truncated the 3j series as suggested above, In Table 3 we
give the coefficients for the optimum value of o with PI = 4. 1In
the LCAD approximation we have in one calculation again constrained
~all the orbital exponents to be equal. In another calculation we
allowed the three orbital exponents to differ. The optimum values are

given in Table 3.

Some ‘expectation wvalues computed with these wave functions are
given in Table 4. Values calculated with the exact function of Peeklg
are included for comparison. The six term function (PI = 2) gives an

energy accurate through the nineth digit, and expectation values of



14

powers of A and | are also very good. However, the matrix element
of LX between 3dll and the ground state differs for our function from
the value reported by Dalgarno and McCarroll.lO The ratio of the two
values is essentially Y2 . We will discuss this disagreement in
Section IV, below. In the LCAO calculation, the single orbital exponent
value is much better for the 3dll state than for the ground state.

All calculated values except <3dHlelO> are quite good. The intro-
duction of three different exponents does not substantially improve

the results. We will discuss the value of <3dH‘LX|O> in Section IV.

C. Higher Excited States

Variation of the linear coefficients in the functions of the form
given in Eq. (24) leads to a secular equation. The higher energy
solutions provide approximations to higher excited states. Table 5
shows the energies of excited states computed with PI = 3 (10 terms)
for different values of oo . In the previous calculation we optimized
0 in order to get the lowest energy for the 3dll state. For each of
the excited states, however, the energy is a different function of
0 . Some optimum values are presented in Table 6. If different
o-values are chosen for different states, the functions are no longer
orthogonal and may contain components associated with lower-lying
states. If PI w@s . allowed to become infinite, the effect of different
exponentials for different states could be achieved.

We can see from the data in Table 5 that the 10 term basis set is
fairly good for describing the lower excited states because their

energies are rather insensitive to o . This is not true for the higher



states. A set of 21 terms leads to quite good results if o > 0.3,
but the dependency problem becomes significant.

Results for the LCAO approximation are presented in Table 6B.
They are poor when only one exponent is used; one cannot describe the

higher states in this way. When three exponents are used, the state [2>

(0)

34l was optimized.

is quite weil described although only E

IV. FIRST-ORDER WAVE FUNCTION IN'&'

H
e

As mentioned in Section II, one way of evaludting Ag involves

the use of a first-order wave function. More specifically

ope f % W,
Ag . = zaeé;<wo ]geBk g C;=§> % s |wx > (26)
where W§1> is a solution of the first-order equation

(- e D= g ¥ (27)

A. Variational Approach

It is well known that the best approximate first-order function

W;l) can be obtained by minimizing

() <"I!}E1)l j—to - Eéo) I%f{l)> + 2Re {<@}(<l) | j{;!‘i’éo)>} (28)

with respect to variations in @(l). In this expression
3{‘ = 62k2 5 éSL.
x  Be v 3 Tvx

v

We have used a trial function
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~ 1/ 1/ - . .
wil) = 2% - 1L - 1B sing & 1 P Aiy2itt (29)

1,7

and minimized E<2) with respect to o , as well as the Pij' With 4
and j ranging from O to 4, the best value obtained for o is 0.900.
The function E<2)(m) for optimized P's is given in Table 7. The
minimum is very shallow with E(z)(a) nearly constant for 0.6 < o < 1 .

This suggests that the number of terms (i and j values) included is

sufficient.

B. Expansion in Terms of Unperturbed Functions

In conventional Rayleigh—Schrgdinger perturbation theory, the
first~order fﬁnction is expanded in the complete set of zero-order
eigenfunctions
A Do v . (30)

i g g0
0 hi
We have already computed various approximations to the zero-order
excited state functions and are thus able to compute the matrix
elements (H;)jo and the zero-order energy differences. Matrix elements
of Zx in the various approximations are presented in Table 8.

In order to get a good first-order wave function we need a set
of zero—order functions which is essentially complete and which in-
volves functions that are good approximations to the true zero-order

excited state functions. If the set is complete then

<0|22]0> = 2 |<0]2_|n>|?
X n X

which provided a check.



For the series form of WiO) » Eq. (24), we have

6
£ |<0]e_|#¢® 1 = 2, o = 0.798)>|% = 0.090
X' n .
n=1
21
2 |<o]s_ |9 (p1 = 5, a = 0.748)>|? = 0.101
n=l X' n

while with Wéo) of the corresponding form we f£ind

<o|2§]o> = 0.144

The comparison is disappointing. We note that the matrix elements

<9|2X|O> and <15|2x|0> are not negligible and conclude that we must
expect additional contributions from states with n > 21. From the
fact that the matrix elements differ significantly in the 6 and 21
term calculations, we conclude that the description of excited states
is not good.
Before leaving this subjeet, we recall that our value of

<Ol£xl3dﬂ> differs from that of Dalgarno and McCarroll18 by V2 . We
know that our expression for QX is correct since we get the exact

result for <0]2§|0>,20

and that the Wéo) appear to be properly normal-—
ized since‘they give good expectation wvalues. If <Of£xl3dw> were
off by Y2 in our calculation, the other <O|£x!n> would be off by the
same factor and the sum of squares would be greater than 0.144, which
is impossible.

In the LCAO approximation we find that

3 2

z |<0le_|n>]* = 0.035
X

n=1
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while
<w£°> (LCAO) I!@il\yéo) (LCAO)> = 0.114

The result is rather poor. We recall that the LCAO energies are
not exact and that expectation values are off by 10%. We conclude
that the LCAO approximation isn't a very good one in this case. We

expect it to lead to a poor g-factor.
V. CALCULATION OF THE g~-FACTOR

We have seen that the g~tensor differs from the free-electron,
isotropic value in a way characterized by the single number

&2
g 2 Z
A px = émc g <0k I =3 Oy, +2z) |0>

v

+ g B 2Re {<0Ik§ -52—3- zvxlwg)>
vV

where Wél) is the optimum @;l) or is given as an expansion in terms
of (approximate) excited state functions. The first term is in fact
negligible. When computed from W§O>(NI = NJ = 4) it is of the order
10—9, while contributioﬁs from the second term are 10_5 - 10_6. We
will thus neglect contributions from the first term.

We have computed Agxx from the variationally determined @él>
The result is presented as a function of o in Table 7. The value
corresponding to the best @él> is Agxx =~ 0.2249 x 10—5. The matrix

elements <@é0)] ffg|@§0)>, which are required to compute Agxx by the

expansion technique, are given in Table 9. The matrix element between
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the ground state and the 3dm state we find does not agree with that
of Roberts, Foster and Selig.5 For the two series WZ » wWith PL = 5
and PJ = 2, respectively, o was chosen to minimize the 3dm energy.

The value obtained for these two treatments is the same,

Agxx = - 0.200 x 10_5. The contribution of the 3dm state alone is
- 0.144 x 1078,
-5
In the LCAO approximation we get Agxx = - 0,115 x 10 ~. Each of

the terms contributing to Ag in the LCAO approximation has been
computed separately. The basis-set matrix elements for the orbital
exponents optimizing the 3dm energy are given in Table 10. If all
overlaps between AOS on different centers are neglected, we get
Agxx =40,12 x 10—5. This is of the same magnitude as the result in-

cluding overlap, but has the wrong sign.

High frequency part of the magnetic susceptibility

It is well known that the high frequency part of the magnetic
& -
susceptibility is proportional to I ]<W(012 |W<o)>]2(E W E<O)) "
= o e’ n o n

We have the information necessary to evaluate this term approximately.
With the set of excited states computed here, 4itsg value is - 0.0742
atomic units. The contribution of the 3dm state is - 0.0123. The
expression above is often approximated using an average energy, as
z |<W(O)l2 |W(O)>|2/AE = <W(O)|22|W<O>>/AE . Roberts et,al? have used
i o X' 0 o x'o
this expression to estimate the contribution of higher excited states
to Ag, with AE = 6.25(E3dTr - Eo). Dalgarno and Mc Carroll18 have used

the value AE ~ 3 or 4 x-% E0 . Our caleculation suggests
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AE ~ 4.45 (E3dTT - EO) which is in good agreement with the value esti-

mated by Dalgarno.
VI. DISCUSSION

- First—order wavefunction: We have obtained a first-order wave~

gD

function in two different ways: wvariationally and as the
Rayleigthchrgdinger expansion in terms of excited states. If the
set of zero~order functions were complete, these two procedures would
lead to the same result. The set is not complete, however, and the
treatments are thus inequivalent. The variational approach is to be
preferred when it can be used.

In the wariational calculation all parameters are optimized.
In particular, there is no doubt as to the exponent, o . In the
Rayleigh~Schr3dinger,treatment, different values of o would presumably
be optimum for different excited states, and it is not clear which one

@(l) can be more

should be used. The inhomogeneous equation giving
readily solved than can the homogeneous equation for good excited
states Wéo). In the calculation of Ag, it is easier to evaluate the

(1>|r“3zx|w§°)

single term <Y > than the whole set of terms

n x'"0
For these reasons it seems that the variational method is pre-
ferable and that our best value for Ag is that obtained using Q(l).
- LCAD Method: The LCAO results do not seem to be very good. The
results could presumably be improved by allowing more freedom to the

orbital exponents in the ground state. One cannot expect to get a



good LCAO-MO-SCF function with a small basis set, and even for good
functions of this form energies are often in error by several percent.
This suggests that our results are not atypical, and that with LCAO

calculations, Ag may be off by a factor of 2.

Additional Approximations in the LCAO Formulation

3

It is of some interest to use the present results Lo examine som

o

additional approximations within the context of the LCAO method which
was suggested by Stonelo and are widely used. They are:

1) The wavefunction of the molecule can be approximated by a
single determinant.

o
o

i, -3 h| - 1 =
2) All terms <Xk]rk' lﬁﬁlxk*> are neglected unless k = k = k
3) <Xilr -3 L lxj> =7 <Y |2 ]Xj> where ¢, ig the usual spin-
k'Tk kuttk k 'tk k
orbit constant for atom k .

<

Xi¢> = 0 unless k = k7 .

i
4 <Xklzﬁh

5 g b = ol ba>

In each case Xl is the ith AO on center k and £ is the [U-component
k ku

of %, .
k.
We are not in a position to discuss the first assumption, since

H2 is a one-electron system. It is expected to be quite good, since

g 1is essentially a one-electron property.
)

Approximations 2 and 4 involve the neglect of two-center terms.

It is clear from Table 10, however, that the two center terms are not
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negligible compared with the one center terms. Approximation 3 can be
good only if the ratio <Xi|r _32 'Xj>/<xil£ ]Xj> is independent of
k k Tky'tk k' kK
i and j . From the third column in Table 10 this is seen not to be
the case.
Approximation 5 is expected to be quite good, since
-1 .
,&k = &k +-{ Lo }cga,and the matrix element of the second term
usually vanishes. In at least one case this is not true, however

A B B
Py > =0 but <18 |5LAX|2py

since <15*[%, |2 > = 4.261 .
Ax
Values for Agxx calculated by the different methods and including
various approximations are given in Table 1l1. The approximate LCAO
results are of the same magnitude as other results but of opposite
sign. This agrees with the finding of Glarum3 for CH3 . Our conclusion
is that one must be very careful in the calculation of g factors

and that multi-center terms must be included and evaluated carefully,

since their contribution is significant.



